BASKA MASK
THE NEW GENERATION
SUPRAGLOTTIC AIRWAY

Excellent positive pressure ventilation
Superior gastric reflux suction clearance

www.proactmedical.com.au
INTRODUCTION
We have now had supraglottic airways, known popularly as laryngeal masks, in everyday anaesthesia practice for over 25 years. There have been several modifications to the LMA over the years – addition of venting ports, intubation aids, camera attachments, ability to use as an endotracheal intubation conduit and so on.

Supraglottic airways (SGAs) have proven to be easy to use, robust, versatile and usable in many difficult situations where direct laryngoscopy is difficult or unnecessary (eg. obese patients). They are superior to oral airways and have rendered chin bars, mask straps, Clausen harnesses and oropharyngeal airways virtually obsolete.

Nevertheless, there are many additional demands on our supraglottic airways as anaesthesia practice becomes increasingly complex. There are new ventilator modes on our basic anaesthesia ventilators which will allow safe ventilation through a supraglottic airway provided these were modified or redesigned to accommodate these practices.

With this in mind, many prototypes of a new, improved airway have been produced to address these specific developments

DESIRABLE FEATURES OF SGADs (Supraglottic Airway Device's)
The most desirable features of the supraglottic airway devices (SGADs) have been enumerated by several authors (eg. Miller, Brain, Charters). As time goes on and more and more laryngeal mask airways and other supraglottic devices are used daily, new demands are put on our devices such that these lists of features become longer and longer.

Can we ever reach a point where our entire wish list is filled by a single device?

The current investigation looks at four desirable aspects of SGADs:

• Ease of insertion without the need for finger guidance
• Ability to insert the device in the neutral position without the need for flexion or extension of the neck
• Presence of securing loops to reduce risk of displacement of the SGAD during patient transportation
• Ability to positive pressure ventilate at higher airway pressure without gastric inflation

2000
In 2000, Charters suggested that the Ideal Airway Device is one that is
• Easy to insert
• Not impaired by suboptimal placement
• Convertible to a ‘dedicated’ airway
• Carries no aspiration risk
• Produces minimal pharyngeal distortion
• Has no side effects
• Produces an efficient airway
• Works in abnormal airways
• Has a good ‘accept / reject’ profile
• Allows IPPV by sealing upper airway
• Is cricoid pressure friendly

2004
In 2004, Don Miller suggested that the “Core” Desirable Features of a Supraglottic Airway were:
• Non-invasive (supraglottic) airway conduit.
• Easy insertion, even by a nonspecialist.
• Good first-time insertion success rate.
• Stable airway once positioned, i.e. reliable hands-free airway.
• Sufficient sealing quality to apply PPV.
• Minimal risk of aspiration.
• Minimal risk of cross-infection.
• Minimal risk of serious side-effects.
ACCEPT / REJECT PROFILE*

* Archie Brain, 1998

![Diagram showing the Accept / Reject Profile for a Foreign Body by Oropharynx]

CONCLUSION

The Baska Mask is equipped with a self-sealing cuff and gastric reflux overflow protection using a sump reservoir and self-venting channels making gastric tube insertion superfluous.

DOES THE DESIGN FULFIL THE AIMS?

Yes, all four aims, namely, ease of insertion without the need for finger guidance and ability to insert the device in the neutral position without the need for flexion or extension of the neck, to secure the SGAD during transportation and ventilation and to ventilate effectively at higher airway pressure without gastric inflation are all met.

This is achieved by

1. Providing a strong silicone tab which can be used to pull forwards the tip and head of the device to conform to the airway during insertion;
2. Adding a set of securing rings to the front and back of the device so that cotton tape can be threaded into the Baska SGAD; and
3. Manufacturing the device out of thin, high grade silicone so that the ‘cuff’ seal is provided by a thin, pliable, conformable diaphragm which virtually adheres, at each breath, to the laryngeal introitus.

ACKNOWLEDGEMENTS

The authors wish to thank Drs.

- Kanaq and Meenakshi Baska for many years of dedicated and tenacious service in the pursuit of an improved airway device which addresses some of the shortcomings of earlier models.
- The Anatomy Department of the School of Medicine of the University of Sydney for producing anatomical specimens suitable for SGA testing and for help with photography of the SGA in place on the anatomical specimens.
- The Medical Illustrations Unit of the Sydney Children’s and Prince of Wales Hospitals for their assistance with poster preparation.
- Avantech for the myriad detailed engineering drawings which form the basis for the creation of the silicone models and production moulds for supraglottic airways.
BASKA MASK FEATURES

Attachment for suction to keep sump area clear, suitable for placement either side

Loops assist in securing the mask

Bite block

Tab for manually curving the mask for easy insertion

Large tubes for rapid gastric fluid clearance

Self recoiling cuff produces effective seal with the larynx

Advanced airway opening provides superior patency of seal and increased protection against gastric overflow.

Superior gastric reflux drainage

- Large distal aperture locates at upper oesophagus and opens into sump cavity for easy drainage of gastric fluid, thus minimising the risk of aspiration.

Advanced self-sealing variable pressure cuff

- Expanding membranous cuff produces a seal which increases proportionately with increasing airway pressure during positive pressure ventilation.

Proudly distributed by PROACT MEDICAL SYSTEMS

Australia

- 1800 333 301
- sales@proactmedical.com.au
- www.proactmedical.com.au

New Zealand

- (09) 354 4550
- sales@proactmedical.co.nz
- www.proactmedical.co.nz